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a b s t r a c t

The control problem for an underactuated Lagrangian system is considered. A system of smooth non-
linear functions of the generalized coordinates is introduced into the treatment and the number of
functions is equal to the number of generalized control forces. The aim of the control is to bring the
system in a finite time to a terminal set specified by the level lines of the selected functions, and it is
required that the motion at the terminal instant occurs along the level lines. As a result, a development
and extension of Chernous’ko’s decomposition method is given. This method was proposed for designing
feedback control for Lagrangian systems when the number of controls in a system is equal to the number
of its degrees of freedom.

© 2010 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

A system is considered, the dynamics of which are described by differential equations in Lagrangian form

(1.1)

Here, qi are the generalized coordinates of the system, Ui are the generalized control forces, Qi are all the remaining generalized forces
including uncontrolled perturbations, n is the number of degrees of freedom of the system, derivatives with respect to time t are denoted by
a dot and T(q, q̇) is the kinetic energy of the system, specified in the form of a positive-definite quadratic form of the generalized velocities
q̇i:

(1.2)

We shall assume that all the motions of system (1.1) considered occur in a certain domain Dq in the n-dimensional space Rn such that q ∈ Dq

always. In particular, the domain Dq can be identical to Rn.
It is assumed that geometric constraints of the form

(1.3)

where U0
i

are given constants, are imposed on the control actions at each instant.
Decomposition method. We will now briefly describe the decomposition method1 which was proposed in order to bring system (1.1)

into a specified state

in a finite time �, when all the constants U0
i

are positive. We substitute the expression for the kinetic energy (1.2) into Eqs (1.1) and obtain

(1.4)
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Here q = (q1,. . .,qn) is the vector of the generalized coordinates of the system, A(q) is the symmetric positive-definite matrix of the kinetic
energy of the systems with elements ajk which depend on q, U = (U1,. . .,Un) is the n-dimensional vector of the generalized control forces,
S = (S1,. . .,Sn) is the vector function

(1.5)

where �jk = (�1jk,. . .,�njk) are n-dimensional vectors with the components

(1.6)

and Q = (Q1,. . .,Qn) is an n-dimensional vector which includes the non-controlling generalized forces. It is assumed1 that the forces Q are
dissipative and sufficiently small at low velocities.

Initially, using a control which is directed against the velocity vector, the system is brought into the domain of low velocities where the
components of the vector S become small (in modulus) compared with the components of the vector U.

A control is designed using a game approach in the domain of low velocities.
The initial equations are represented in the form

(1.7)

Here, u plays the role of a new control vector and � is considered as a perturbation vector. In order to satisfy initial constraints (1.3) imposed
on the vector U, the need arises to impose the constraints on the new control u:

(1.8)

Here, a* is a constant which sets an upper bound on the eigenvalues of the matrix A(q) for all q. In other words, if the above constant a* is
known and the constraints (1.8) are satisfied, then satisfaction of condition (1.3) is guaranteed.

The initial problem reduces to the problem of bringing each of the n linear systems (1.7) into a specified terminal state with a zero
velocity in a finite time and retaining them there. In the i-th equation of (1.7), the quantity ui is considered as the control parameter of
one player and the quantity �i is considered as the counteraction of the second player (the opponent). Conditions have been derived1 for
which the resources of the controlling player prove to be greater than the resources of the opponent:

(1.9)

and this game problem has a solution. If the approach of the theory of differential games2 is applied to the linear systems (1.7) with
constraints (1.8) and (1.9), we obtain the expressions ui(qi, q̇i) for designing the guaranteed feedback control which solve the problem
when �0 < u0.

This decomposition method has been used by other authors.3,4 It has been extended5 to the case of non-zero terminal velocities.
The decomposition method has also been extended to the problem of tracking a specified trajectory of motion of a Lagrangian system.6

Subsequent investigations have shown7 that the decomposition method can also be used to control a double pendulum, a Lagrangian
system in which the number of controls is less than the number of degrees of freedom.

A procedure, similar to the decomposition method, was used8–10 for a special case, that is, for solving the problem of the reorientation
of a rigid body when there is disturbance. Another method of controlling dynamical systems of the form (1.1) with constraints (1.3), based
on the idea of decomposition, has been proposed11,12 and other conditions for the realizability of the decomposition method given, the
kinetic energy matrix has been assumed to be unknown and the time at which systems are brought into a specified state occurs in a finite
time. The control algorithm is proved using the second Lyapunov method. The papers13–16 touch on the papers.11–12

We will now obtain an extension of the decomposition method1 to the case of underactuated system (1.4), that is, when, in constraints
(1.3), some of the constants U0

i
together with the corresponding functions Ui are equal to zero. We will consider the situation when only

the first m (m < n) components of the vector U can be non-zero, and we will therefore represent the control vector in the form

(1.10)

where U0
i

are given constants.
The constraint

(1.11)

where Q 0
i

> 0 are given constants, is also imposed on the vector of the non-controlling forces.
We introduce the notation

(1.12)

where L is a smooth m-dimensional vector function which depends on q, and B is an m × n matrix with elements

The initial state of system (1.4) is given:

(1.13)
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The initial values of the vector x and its velocity ẋ, which are given by relations (1.12)

(1.14)

correspond to it.
We shall subsequently bring system (1.4) into a set determined by the motion of the system along the level lines of the functions Li(q)

(i = 1,. . .,m):

(1.15)

From equalities (1.12) and (1.15), we obtain the relations for the terminal q, q̇ in the form

(1.16)

We now consider the following control problem.

Problem 1. It is required to construct a feedback control U(q, q̇) which satisfies constraint (1.10) and which brings system (1.4) from the
state (1.13) into the terminal set (1.16), where x* is a given constant n-dimensional vector. The time of the control process � is finite and is
not fixed. Without loss in generality, the initial instant of time is taken as being equal to zero.

Problem 1 will be solved with additional simplifying assumptions which are formulated in the following section.

2. Simplifying assumptions

We will first make several simplifying assumptions regarding the kinetic energy matrix. We will assume that

(2.1)

and that the eigenvalues of the matrix A(q) for all q lie in the closed interval (0 < a* < a*). The conditions

(2.2)

are therefore satisfied for any n-dimensional vector.
We represent the matrices A and A−1 in partitioned form

(2.3)

Here, A1, A2, �1, �2 are symmetric positive-definite matrices, where A1 and �1 are m × m matrices, A2 and �2 are (n − m) × (n − m) matrices
and Ã and ˜̨ are (n − m) × m matrices. It follows from equalities (2.2) that, for all q, the eigenvalues of the matrices A1(q) and A2(q) also lie
in the interval [a*,a*] and that the eigenvalues of the matrices �1(q) and �2(q) lie in the interval [(a∗)−1, a−1∗ ], and, moreover, the following
estimate of the norms of the matrices Ã(q) and ˜̨ (q) holds

We shall henceforth denote the Euclidean norm of a matrix, that is, the norm of the corresponding linear operator in Euclidean space
by ||Z||:

where z is a vector of corresponding dimension. If the matrix Z is symmetric, its norm is equal to the greatest absolute eigenvalue of the
matrix. If the matrix Z is asymmetric, its norm is equal to the square root of the greatest eigenvalue of the negative-definite matrix ZTZ.

We will now make assumptions regarding the matrix B which contains the first partial derivatives of the functions Li. We will assume
that the matrix B can be represented in the form

(2.4)

where B1 is a non-singular m × m matrix for all q. We will assume that the norms of the matrices B1 and B−1
l

are bounded:

(2.5)

where b* and b* are positive constants. Hence, the inequalities

(2.6)

hold for any n-dimensional vector z.
We will also assume that an upper estimate of the norm of the matrix B̃

(2.7)

is known.
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We introduce the notation

(2.8)

It follows from inequalities (2.2), (2.5) and (2.7) that the norm of the matrix C is bounded for all q

(2.9)

We represent the matrix C in the form

(2.10)

where C1 is an m × m matrix and C̃ is an m × (n − m) matrix. We will assume that C1 and D are non-singular matrices for all q and that upper
estimates for the norms of the corresponding inverse matrices (which hold for all q) are known:

(2.11)

where c* > 0 and d* > 0 are certain constants. Condition (2.11) is satisfied, for example, if the norm of the matrix B̃ is sufficiently small. The
corresponding lemma is presented below.

Lemma. Suppose the following inequality is satisfied

Then, the matrices C1 and D from (2.8) are non-singular and the estimates for the norms of the inverse matrices C−1
1 and D−1, which

occur in inequalities (2.11), are determined by the following equalities

Proof. We shall carry out the proof in parallel for the matrices C1 and D. The chains of inequalities

(2.12)

(2.13)

hold for any m dimensional vector z.

We will assume that the inverse matrix C−1
1 or D−1 does not exist. Then, a non-trivial vector � exists such that C1� = 0 or D� = 0. But this

is impossible by virtue of the inequalities

which follow from relations (2.12) and (2.13) when z = � (� /= 0). Hence, the matrices C1 and D from (2.8) are actually non-singular. We
now put z = C−1

1 z in relations (2.12) or z = D−1z′ in relations (2.13) and obtain the inequalities

which hold for any m-dimensional vector z′, from which estimates (2.11) follow.
Example of the use of the lemma. We will consider the simplest case when L = (q1,. . .,qm) (see relations (1.12)), that is, when the aim of

the control is to bring each of the first m degrees of freedom into the required state with zero velocity. Then, in accordance with notation
(2.4), B1 is an m × m unit matrix and B̃ is an m × (n − m) null matrix. The constants b* and b̃ appearing in estimates (2.6) and (2.7) for the
norms of the matrices B−1

1 and B̃ can be chosen as b* = 1 and b̃ = 0. It is obvious that the condition of the lemma is satisfied in this case. As
a result, using the lemma we find c* and d* appearing in estimates (2.11) for the norms of the matrices C−1

1 D−1 : c∗ = 1/a∗ and d* = 1.
We will assume that the second partial derivatives of the function Li are bounded for all q:

where c1 is a certain constant.

3. Decomposition and the game approach

Differentiating both sides of the second equality of (1.12), we obtain

(3.1)
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Fig. 1.

Eliminating q̈ from Eqs (1.4) and (3.1), we arrive at the second order differential equations for x

(3.2)

We shall consider the m-dimensional vector u as the new control vector and the m-dimensional vector � as the unknown perturbation.
In order to take account of the constraints imposed on the initial control U, we impose the following constraints on the components of the
new control u

(3.3)

We will make a simplifying assumption which we will prove in Sections 4–6. Suppose, during the motion, the moduli of the components
of the vector � are also bounded by a certain constant �0:

(3.4)

and the condition

(3.5)

is satisfied, where X > 0 is a certain constant. Then, ui and �i in the i-th equation of (3.2) can be considered as the controls of two players
where the possibilities of the control of the first player are greater than the possibilities of the control of the second player. We use the
results of the theory of differential games and specify the feedback control ui(xi, ẋi) in the form2

(3.6)

We note that this control is identical to the time-optimal control for the system

The non-zero components of the required initial control are specified by the relations

(3.7)

in which the components of the vector u are given by relations (3.6) and (1.12). The non-singular matrix C1 was introduced earlier in (2.10).
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We shall assume that parameters X and h exist such that the initial state x0
i
, ẋ0

i
of each equation of system (3.2) lies in a corresponding

domain �i (see Fig. 1

(3.8)

It is then easy to show that the phase trajectory xi(t), ẋi(t) lies as a whole in the domain �i (see Ref. 17).
The time of motion �i of the i-th equation of system (3.2) into the state (1.15) depends on the specific realization of the perturbation

�i and on the initial state x0
i
, ẋ0

i
. In the case of motion from points of the domain �i which are farthest from the terminal point and in the

case of the worst perturbation �i = −(1 − X/u0)ui which satisfies inequalities (3.4) and (3.5), this time is a maximum:

(3.9)

The velocity which has the largest possible modulus corresponds to these motions

(3.10)

We now consider system (3.2) as a whole and denote its largest possible time of motion by �*. It is obvious that the time �* is equal to
the longest possible time of motion (3.9) of each of the equations (3.2):

(3.11)

Moreover, the inequality

(3.12)

follows from relation (3.10).

4. Estimate of the perturbations

We will now verify the initial assumptions (3.4) and (3.5) concerning the boundedness of the perturbations. We will first determine the
quantity �0 appearing in inequality (3.4). The increment in the velocity vector q̇ during the control process

is denoted by ıq̇ and a certain constant (as yet unknown) which sets an upper bound on the modulus of the quantity ıq̇ is denoted by �q̇:

(4.1)

Using the auxiliary relations

(4.2)

we obtain the chain of inequalities

from which the estimates for the moduli of the vectors S and R follow (see expressions (1.5) and (3.1))

(4.3)

Taking account of relations (4.3) and expression (3.2) for �, we obtain

(4.4)
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5. The formula for the accelerations of the initial system

We now introduce the vector notation q1, q2, S1, S2 Here, the vectors q1 and S1 are formed from the first m components of the vectors
q and S respectively. Similarly, the vectors q2 and S2 are formed from the last n - m components of the vectors q and S respectively. When
the new notation is taken into account, the last n - m equations of (1.4) take the form

whence we find

(5.1)

Substituting the expression found into the equality

which follows from relation (3.1), we obtain

(5.2)

The non-singular matrix D was introduced earlier in (2.8). Solving Eq. (5.2) for q̈1 and substituting the result

(5.3)

into equality (5.1), we obtain

(5.4)

We now rewrite expressions (5.3) and (5.4) in the more compact form

(5.5)

The partitioned matrices E and F consist of the m × m (E1(q)) and the (n − m) × m (E2(q)) matrices and the m × (n − m) (F1(q)) and
(n − m) × (n − m) (F2(q)) matrices respectively. For them, we have the expressions

(5.6)

We shall use Eq. (5.5) to obtain an estimate of the modulus of the increment in the velocity vector �q̇ during the motion.

6. Estimate of the velocities. Determination of the parameters

We integrate Eq. (5.5) from zero to a certain current instant t ∈ [0, �]:

(6.1)

The inequality

(6.2)

in which the constants e, e1 and f, bounding the norms of the corresponding matrices in expression (6.1)

appear, follows from the system of equalities (6.1).
Using the estimates (3.11), (3.12), (4.2), (4.3), (6.2) and

we obtain the inequality

(6.3)
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Fig. 2.

We now find the value of �q̇ for which inequality (6.3) does not contradict initial inequality (4.1).The linear and quadratic relations
corresponding to the equality sign in the above-mentioned relations are shown schematically in Fig. 2. The abscissae of the points of their
possible intersection are denoted by the letters a and b. The admissible values of �q̇ lie in the interval [a, b].

We equate the right-hand sides of inequalities (4.1) and (6.3), then divide both sides of the resulting equality by k1�* and substitute
expression (3.11) instead of �*. We obtain a quadratic equation in �q̇

(6.4)

Equation (6.4) has a positive

(6.5)

Equation (6.4) has a positive solution if its discriminant Y(X,h) is non-negative and the coefficient of �q̇ is negative. For this, it is sufficient
to require that the following inequalities

(6.6)

are satisfied. We will now indicate the method of solving t

(6.7)

are satisfied. We will now indicate the method of solving the system of inequalities. It follows from inequality (6.7) that the function �(h)
must be positive. Taking account of expression (6.5), we rewrite relations (6.6) in the simpler form

(6.8)

It is necessary that the coefficient of X should be positive. This leads (when account is taken of the positiveness of the function �(h)) to the
constraint

We substitute expression (6.5) instead of �(h) and solve the resulting inequality for h. We have

(6.9)
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We now solve the system of inequalities (6.7) and (6.8) for X and obtain

(6.10)

We choose the parameters X and h according to inequalities (6.9) and (6.10). We note that inequality (6.9) is satisfied for sufficiently
small values of h and inequality (6.10) for sufficiently large values of X. After choosing X and h, the smaller of the two solutions of quadratic
equation (6.4) (see Fig. 2) can be taken as the required value of �q̇:

(6.11)

We now substitute expression (4.4) for �0 into inequality (3.5) and then replace �q̇ in the resulting inequality by expression (6.11). We
obtain

(6.12)

Hence, the initial assumption concerning the boundedness of the perturbations is satisfied in the case of sufficiently large values of u0, that
is, in the case of sufficiently high possibilities of the control.

We will now sum up the results obtained in the form of a theorem.

Theorem. Suppose positive parameters X and h are found which satisfy inequalities (6.9), (6.10) and (6.12). Then, the feedback control
U(q, q̇), which solves Problem 1, is given by relations (1.12), (3.6) and (3.7). This control brings system (1.4) from initial state (1.13) into
set (1.16), if the corresponding initial point (x0, ẋ0), defined by equalities (1.14), lies in the domain � = �1 × . . . × �m, where the set �i is
given by constraints (3.8). At the same time, the trajectory (x(t), ẋ(t)) lies in the above-mentioned domain � and the time of the control
process � does not exceed the magnitude of �*, defined by expression (3.11).

We now present the limiting relation into which the solution of the system of inequalities (6.10) passes when h → 0 (we will only retain
the leading terms in the expansion in powers of h)

(6.13)

The expression obtained can be used instead of inequalities (6.10) for choosing the parameter X in the case of very small values of the
parameter h: it is assumed that the parameters h is so small that inequality (6.9) is also satisfied.

We now obtain the limiting relations for the right-hand sides of relations (6.11) and (6.12) for small h. Since they depend both on X as
well as h, we consider two different situations.

Suppose the parameter X is fixed and h tends to zero:

We note that constraint (6.13) (or (6.10)) is automatically satisfied in this case and relations (6.11) and (6.2) take the following form
(we only retain the leading terms of the expansion in powers of h)

(6.14)

It can be seen that the estimate for the increment in the v

(6.15)

It can be seen that the estimate for the increment in the velocity (6.14) (or (6.11)) tends to zero. The estimate for the time of the motion
(3.11) also tends to zero.

We will now consider the case when the parameter X is directly proportional to h and the two parameters tend to zero:

To be specific, we will choose the smallest possible value of X corresponding to the equality sign in relation (6.13). In this case, relations
(6.11) and (6.12) take the following form (only the leading terms of the expansion in powers of the small parameter are retained)

It can be seen that the resulting relations are independent of the parameters X and h. The estimate for the velocity increment is finite and
tends to zero. The same can also be said about the estimate for the time of the motion (3.11).
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7. Example

We will now consider a double pendulum (Fig. 3) consisting of a fixed base B0 and two absolutely rigid links B1 and B2. The elements
of the construction are joined to one another by two ideal cylindrical hinges O1 and O2 in such a way that the two links can only execute
motions in the vertical plane. The centre of mass C1 of the link B1 lies on the ray O1O2. The position of the centre of mass C2 of the link B2
does not coincide with the position of the hinge O2. The system is controlled by the moment of the forces M created in the hinge O1. The
friction in the hinges and of air is not taken into account.

The Lagrange equations describing the motion of the system have the form

(7.1)

The following notation has been introduced here: qi is the angle between the straight line OiCi and the vertical axis, lgi is the length of the
segment OiCi, l1 is the length of the segment O1O2, mi is the mass of the link Bi, Ii is the moment of inertia of the link Bi with respect to the
axis of the hinge Oi, G0

i
sin qi is the torque created by the force of gravity in the i-th hinge and g is the acceleration due to gravity.

The constraint

(7.2)

where M0 is a given constant, is imposed on the control torque.
We now change to the new variable t′ and introduce the dimensionless parameters � and �

(7.3)

The prime on the new variable t′ will henceforth be omitted. Equations (7.1) take the form

(7.4)

We demonstrate the calculation of the control parameters for the following characteristics of system (7.1)

The following parameters of system (7.4) correspond to the selected values

Fig. 3.
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We specify, for example, the function L (1.12) in the form

In this case, the angle between the links emerges as the x coordinate. We will consider the problem of controlling the configuration
of the pendulum when it is required to change the angle x from a certain initial value H to a final value -H, where H < �/2 is a certain
sufficiently small positive constant. The initial position of the pendulum is arbitrary. However, for simplicity, we shall assume that the
initial angular velocity of rotation of the two links is equal to zero. This auxiliary problem arose7 when solving the more complex problem
of the swinging of a double pendulum.

At the initial instant, the pendulum is at rest and, consequently, |q̇0| = 0. Moreover, by virtue of the linearity of the function L(q), the
modulus of the vector R as well as the constant c1 are equal to zero (see relations (3.1) and (4.3)). In this case,

and the first inequality of (6.10) is simplified:

(7.5)

and the second equality of (6.10) is automatically satisfied, and relations (6.11) and (6.12) take the form

(7.6)

(7.7)

The kinetic energy matrix has the form

(7.8)

The matrix B from (1.12) is constant:

(7.9)

Using expressions (7.8) and (7.9), we find the matrix C (2.8):

The matrices E1, E2, F1, F2 (5.6) and D (2.8) are scalar functions:

where

It follows from the monotonicity of the change in the coordinate x(t) (when ẋ(0) = 0) that the angle between the links will be bounded
|q2 − q1| ≤ H < �/2 in the control process, that is,

To be specific, we let H = 0.025, and, in this case, it can be assumed that h = 2H = 0.05.
We now determine the values of the constants Q 0

2 , c, e, e1, f, required to solve inequalities (6.9) and (7.5):
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In the case of the values of the constants which have been found, inequalities (6.9) and (7.5) take the form

(7.10)

It can be seen that the value of the parameter h = 0.05, chosen earlier, satisfies the first inequality of (7.10). Substituting this value into the
right-hand side of the second inequality of (7.10), we find the admissible values of he parameter X corresponding to the chosen value of h:

We put

Fig. 4.
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We now determine the constants Q0 and c*, used in inequality (7.7), and also the constant c*, used in equality (3.3):

For the values of all the constants which have been found and the chosen parameters X and h, inequality (7.7) reduces to the constraint

(7.11)

and, as a result (when equality (3.3) and inequality (7.7) are taken into account), to the constraint on the admissible amplitude of the
control torque:

The initial parameters of the pendulum satisfy this constraint.

8. Numerical modelling

We will now present the results of numerical modelling The initial conditions were chosen to be as follows:

It is required to bring the system into the terminal set

Equations (7.4) were integrated in the case of the control

constructed using the proposed technique (the values of M, c*, �, � and X were found in the preceding section).
The quantities q1, q̇1, q2, q̇2, x, ẋ are shown in Fig. 4 as functions of the time t, and the relation ẋ(x), where x = q2 − q1 is the angle between

the links, is shown in Fig. 5. The three basic stages of the control process, corresponding to bringing of the point (x, ẋ) onto the switching

Fig. 5.
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curve �*(x), its motion along the switching curve and retention at the terminal point (x*,0), are clearly expressed in Fig. 4. Only the first
two stages are seen in Fig. 5. The control time was found to be equal to 0.03586 while, in the case of its estimate (3.11), it was found to be
equal to 0.08528.

The maxima of the quantities |ẋ| and |q̇| were attained for t = 0.01051 and they are

According to formulae (3.12) and (7.6), the upper limits for the above-mentioned quantities have the form
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